MOVES Project Level Sensitivity Analysis

George Noel

Northern Transportation and Air Quality Summit (NTAQS) Pittsburgh, PA August 20th, 2014

Advancing transportation innovation for the public good

U.S. Department of Transportation Office of the Secretary of Transportation John A. Volpe National Transportation Systems Center

□ Background

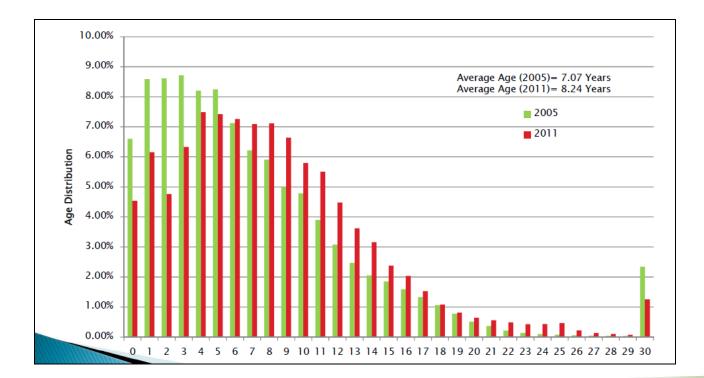
□ Analysis

- Age Distribution
- Fleet Mixture
- Average Speed compared to user defined Operating Mode Distributions
- Results
- Findings
- Questions

Background

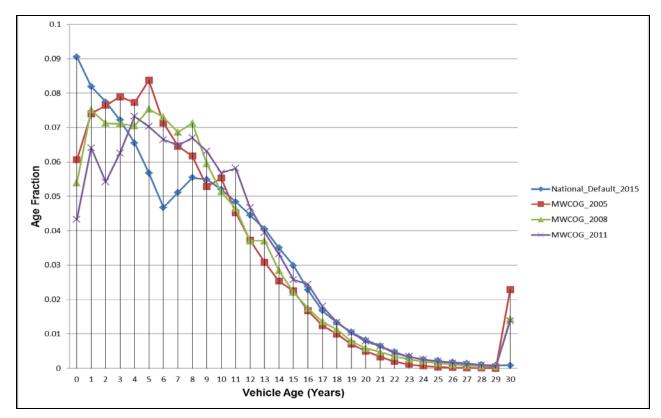
- Project sponsored by Federal Highway Administration (FHWA)
- MOVES Regional Level Sensitivity Analysis
 - Report released in December of 2012
- MOVES Project Level Sensitivity Analysis
 - Was a follow up analysis to the Regional Level Sensitivity Analysis
 - Parameters chosen to be analyzed for the Project Level analysis were based on some of the finings from the Regional Level Analysis
 - Final Report completed in March

Age Distribution


- Age Distribution was analyzed for the Regional Level Sensitivity Analysis
- The Project Level Analysis applied more meaningful variations
 - Reached out to the Metropolitan Washington Council of Governments (MWCOG) to obtain data.
- Analyzed multiple vehicle types
 - Passenger Cars
 - Transit Buses
 - Single Unit Trucks
 - Combination Trucks

Age Distribution

□ MWCOG provided data for 2005, 2008, and 2011


□ The data showed the fleet aging throughout the years

Passenger Car Age Distribution Trends

- □ More variable for newer model years
- □ Less variable for latter years
- □ Age Groupings were based on these observed trends

Passenger Car Age Distribution Groupings

- Passenger Cars were put into five age groups
- □ Five Scenarios were analyzed
- □ Scenario 1 has the least amount of variation based upon the observed data
- □ Scenario 5 has the highest amount of variation base upon the observed data

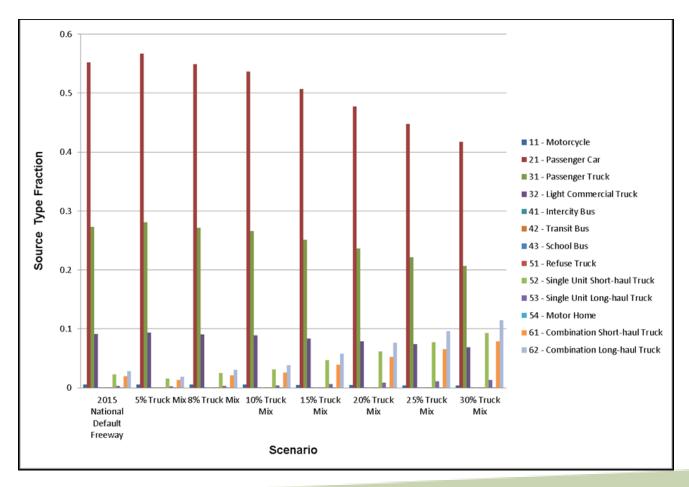
Vehicle Age Range	Baseline Age Fractions	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
0-3 years	0.32	-5%	-10%	-20%	-30%	-45%
4-7 years	0.22	-2%	-5%	-7.50%	-10%	-20%
8-12 years	0.26	+5%	+10%	+20%	+30%	+50%
13-17 years	0.14	+4%	+8%	+15%	+20%	+30%
18-30 years	0.06	+2.5%	+5%	+7.5%	+10%	+25%
Average Vehicle Age	7.48	7.68	7.86	8.21	8.53	9.24

Passenger Car Age Distribution Results

 \bigcirc

Source Type	Pollutant	Case	Average Age	Emission Rate (gram/vehicle-mile)	Percent Change
	со	Baseline	7.48	1.484	-
		Scenario 1	7.68	1.516	2.15%
		Scenario 2	7.86	1.548	4.14%
		Scenario 3	8.21	1.604	7.49%
		Scenario 4	8.53	1.653	10.24%
		Scenario 5	9.24	1.776	16.47%
		Baseline	7.48	0.2929	-
		Scenario 1	7.68	0.3017	2.91%
	NO	Scenario 2	7.86	0.3104	5.63%
	NO _X	Scenario 3	8.21	0.3246	9.76%
		Scenario 4	8.53	0.3367	12.99%
Bassanger Cor		Scenario 5	9.24	0.3700	20.84%
Passenger Car		Baseline	7.48	0.0398	-
	VOC	Scenario 1	7.68	0.0409	2.88%
		Scenario 2	7.86	0.0421	5.56%
		Scenario 3	8.21	0.0439	9.51%
		Scenario 4	8.53	0.0455	12.62%
		Scenario 5	9.24	0.0502	20.78%
		Baseline	7.48	0.0067	-
		Scenario 1	7.68	0.0068	1.16%
	PM _{2.5}	Scenario 2	7.86	0.0069	2.27%
		Scenario 3	8.21	0.0070	4.01%
		Scenario 4	8.53	0.0071	5.56%
		Scenario 5	9.24	0.0075	9.94%

Fleet Mix


- Analyzed five cases to determine how sensitive fleet can be a specific MOVES link
- The five cases include
 - Geographic area comparisons of fleet mix(Georgia Tech provided data)
 - Passenger Car to Passenger Truck ratio
 - Percent Truck Mix
 - Truck Type Mix
 - Transit Bus Mix

Percent Truck Mix Sensitivity

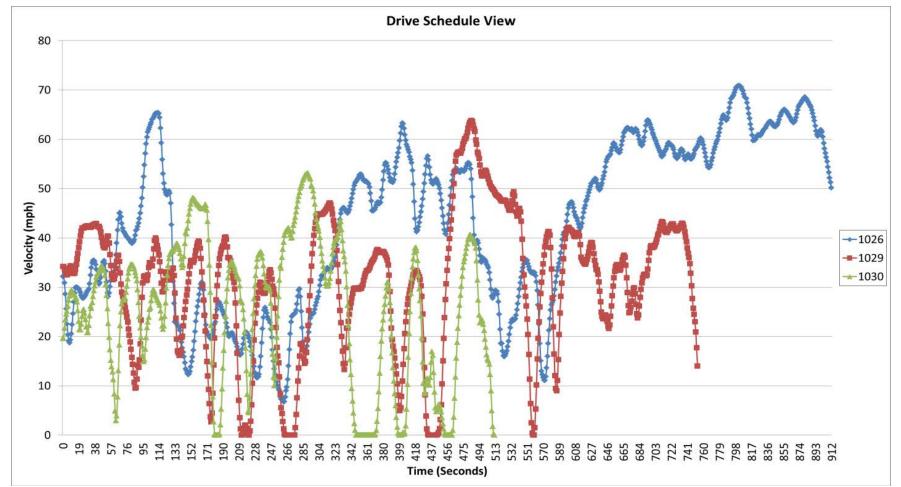
 \bigcirc

Varied the truck mix while proportionally adjusting the other MOVES source types

Percent Truck Mix Results

 \bigcirc

Pollutant	Description	Emission Rate (gram/vehicle- mile)	Percent Change	
	Baseline_Highway	1.2006	-	
	5% Truck Mix	1.0046	-16.33%	
	8% Truck Mix	1.2464	3.82%	
	10% Truck Mix	1.4077	17.25%	
NO _X	15% Truck Mix	1.8108	50.83%	
	20% Truck Mix	2.214	84.41%	
	25% Truck Mix	2.6172	117.99%	
	30% Truck Mix	3.0204	151.57%	
	Baseline_Highway	0.0342	-	
	5% Truck Mix	0.0268	-21.55%	
	8% Truck Mix	0.0359	5.04%	
	10% Truck Mix	0.042	22.77%	
PM _{2.5}	15% Truck Mix	0.0571	67.08%	
	20% Truck Mix	0.0722	111.41%	
	25% Truck Mix	0.0874	155.73%	
	30% Truck Mix	0.1025	200.06%	


Average Speed and Operating Mode Distribution Comparison

- Compared utilizing average speed for a link to a user defined operating mode distribution
 - When using average speed with MOVES, default drive schedules are applied
- Highway Capacity Manual (HCM) based drive schedules
- □ Georgia Tech provided operating mode distributions

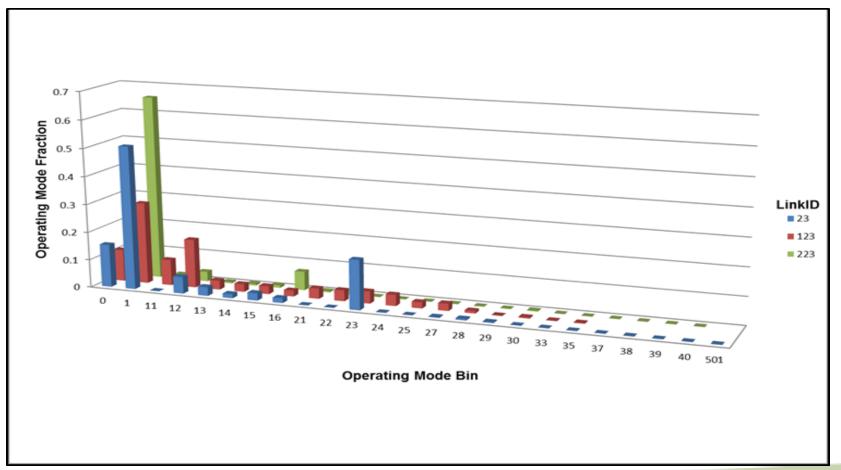
Example of MOVES Default Drive Schedules

 \square

Intersection Analysis

Intersection

- 25 mph, 35 mph, 45 mph approach speeds
- LOS B,D, and E
- Consisted of approach, queue, and departure (acceleration) links


Approach Speed (mph)	LOS	Signal Cycle Length (Seconds)	Yellow Time (seconds)	Green Time (seconds)	Red Time (seconds)	Vehicle Headway (seconds)		Acceleration Rate (mph/s)	
	В	55	4	10	41	14			4
45	D	95	4	23	68	10	-5	3	9
	Е	100	4	24	72	9			11

45 mph Scenario Intersection Data

Operating Mode Distributions

45 mph Intersection Scenario – Queue Links LOS D Operating Mode Distributions

Intersection Results

 \bigcirc

Link Description	LinkID	Modeled Average Speed (mph)	Level of Service	CO Emission Rate (gram/veh- mile)	CO % Difference Compared to Average Speed	PM _{2.5} Emission Rate (gram/veh- mile)	PM _{2.5} % Difference Compared to Average Speed
Intersection Queue Link Average Speed	120			3.135	-	0.0214	-
Intersection Queue Link HCM	20	14.84	LOS B	1.555	-50.40%	0.01506	-29.62%
Intersection Queue Link GATech	220			1.644	-47.57%	0.0189	-11.72%
Intersection Queue Link Average Speed	123			3.256	-	0.02276	-
Intersection Queue Link HCM	23	13.24	LOS D	2.028	-37.71%	0.01679	-26.25%
Intersection Queue Link GATech	223			1.842	-43.41%	0.02118	-6.95%
Intersection Queue Link Average Speed	126			3.393	-	0.02356	-
Intersection Queue Link HCM	26	11.8	LOS E	2.345	-30.89%	0.01877	-20.32%
Intersection Queue Link GATech	226			2.067	-39.07%	0.02302	-2.27%

Some of the Findings

- Variations in Age Distribution from year to year can impact emission rates
- Passenger Car to Passenger Truck Ratio is important
- The proportion of combination trucks in your fleet mix has a large influence on composite emission rates
- □ Although a small sample size from this analysis:
 - There is large variation in emissions rates when comparing average speed to the HCM based operating mode distribution and/or Georgia Tech operating mode distribution.

Acknowledgments

Michael Claggett and Paul Heishman from FHWA

- □ Ann Xu, Randy Guensler, and Vetri Elango from Georgia Tech
- Ron Kirby from the Metropolitan Washington Council of Governments (MWCOG)

